当前位置:首页 > 教学范文 > 教案

《二次函数》教案

时间:2023-02-21 12:05:11 收藏本文
《二次函数》教案

《二次函数》教案

作为一名为他人授业解惑的教育工作者,通常会被要求编写教案,教案是教学活动的总的组织纲领和行动方案。那么大家知道正规的教案是怎么写的吗?以下是小编为大家收集的《二次函数》教案,欢迎大家分享。

《二次函数》教案1

【知识与技能】

1.理解具体情景中二次函数的意义,理解二次函数的概念,掌握二次函数的一般形式.

2.能够表示简单变量之间的二次函数关系式,并能根据实际问题确定自变量的取值范围.

【过程与方法】

经历探索,分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法描述变量之间的数量关系.

【情感态度】

体会数学与实际生活的密切联系,学会与他人合作交流,培养合作意识.

【教学重点】

二次函数的.概念.

【教学难点】

在实际问题中,会写简单变量之间的二次函数关系式教学过程.

一、情境导入,初步认识

1.教材P2“动脑筋”中的两个问题:矩形植物园的面积S(2)与相邻于围墙面的每一面墙的长度x()的关系式是S=-2x2+100x,(0

2.对于实际问题中的二次函数,自变量的取值范围是否会有一些限制呢?有.

二、思考探究,获取新知

二次函数的概念及一般形式

在上述学生回答后,教师给出二次函数的定义:一般地,形如=ax2+b ……此处隐藏17419个字……p>

例题学习:

P166例1、例2(略)

在教师的引导下,学生应用提公因式法共同完成例题。

让学生进一步理解提公因式法进行因式分解。

活动6:课堂练习

1.P167练习;

2. 看谁连得准

x2-y2 (x+1)2

9-25 x 2 y(x -y)

x 2+2x+1 (3-5 x)(3+5 x)

xy-y2 (x+y)(x-y)

3.下列哪些变形是因式分解,为什么?

(1)(a+3)(a -3)= a 2-9

(2)a 2-4=( a +2)( a -2)

(3)a 2-b2+1=( a +b)( a -b)+1

(4)2πR+2πr=2π(R+r)

学生自主完成练习。

通过学生的反馈练习,使教师能全面了解学生对因式分解意义的理解是否到位,以便教师能及时地进行查缺补漏。

活动7:课堂小结

从今天的课程中,你学到了哪些知识?掌握了哪些方法?明白了哪些道理?

学生发言。

通过学生的回顾与反思,强化学生对因式分解意义的理解,进一步清楚地了解分解因式与整式的乘法的`互逆关系,加深对类比的数学思想的理解。

活动8:课后作业

课本P170习题的第1、4大题。

学生自主完成

通过作业的巩固对因式分解,特别是提公因式法理解并学会应用。

板书设计(需要一直留在黑板上主板书)

15.4.1提公因式法 例题

1.因式分解的定义

2.提公因式法

《《二次函数》教案.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式