二次根式教案模板集锦5篇
作为一名人民教师,往往需要进行教案编写工作,编写教案有利于我们科学、合理地支配课堂时间。那么什么样的教案才是好的呢?以下是小编为大家收集的二次根式教案5篇,仅供参考,希望能够帮助到大家。
二次根式教案 篇1教学目的:
1、在二次根式的混合运算中,使学生掌握应用有理化分母的方法化简和计算二次根式;
2、会求二次根式的代数的值;
3、进一步提高学生的综合运算能力。
教学重点:在二次根式的混合运算中,灵活选择有理化分母的方法化简二次根式
教学难点:正确进行二次根式的混合运算和求含有二次根式的代数式的值
教学过程:
一、二次根式的混合运算
例1 计算:
分析:(1)题是二次根式的加减运算,可先把前三个二次根式化最简二次根式,把第四式的分母有理化,然后再进行二次根式的加减运算。
(2)题是含乘方、加、减和除法的混合运算,应按运算的顺序进行计算,先算括号内的式子,最后进行除法运算。注意的计算。
练习1:P206 / 8--① P207 / 1①②
例2 计算
问:计算思路是什么?
答:先把第一人的括号内的式子通分,把第二个括号内的式子的分母有理化,再进行计算。
二、求代数式的值。 注意两点:
(1)如果已知条件为含二 ……此处隐藏2734个字……用转化的思想解决问题,总结出解题规律:求未知数的取值范围即转化为①被开方数大于等于0②分母不为0列不等式或不等式组解决问题。
活动二:探究二次根式的性质1 1.探究(a)与0的关系 学生分类讨论探究出:(a)是一个非负数,此时归纳出二次根式的第一个性质:双重非负性。培养学生的分类讨论和概括能力。例2:,则变式:,
活动三:探究二次根式的性质2 探究()2=a(a)由课本具体的正数和零入手来研究二次根式的第二个性质,首先让学生通过探究活动感受这条结论,然后再从算术平方根的意义出发,结合具体例子对这条结论进行分析,引导学生由具体到抽象,得出一般的结论,并发现开平方运算与平方运算的关系,培养学生由特殊到一般的思维方式,提高归纳、总结的能力。前两题学生口述教师板书,后面的两题由学生板演引导学生分析(2)(4)实质是积的乘方和分式的乘方 拓展:反之(a)如 为后面的化最简二次根式(简单的分母有理化)做好铺垫。 例4:在实数范围内分解因式
活动四:探究二次根式的性质3 3.探究 在活动三的基础上出示课本第4页的探究: 引导学生比较活动三与活动四探究中两组题目的不同之处,活动三中的题目是对非负数先进行开平方运算,再进行平方运算;而活动四中的题目正好相反,是先进行平方运算,再进行开平方运算。再次由特殊到一般的让学生归纳出二次根式的又一个性质。培养学生观察、对比的能力和意识。 此时引导学生谈一谈对()2和的联系和区别 相同点:①都有平方和开平方运算 ②运算结果都是非负数 ③仅当a时,()2= 不同点:①从形式和运算顺序看:()2先开方后平方,先平方后开方 ②从a的取值范围看:()2(a),(a为任意数) ③从运算结果看:()2=a(a),(a为任意数