对称教学反思
作为一名到岗不久的人民教师,我们都希望有一流的课堂教学能力,对学到的教学新方法,我们可以记录在教学反思中,来参考自己需要的教学反思吧!以下是小编帮大家整理的对称教学反思,仅供参考,欢迎大家阅读。
对称教学反思1一、创设生动的问题情境,激发学生学习的热情和探究的欲望。
古人云:“学起于思,思起于疑”,有疑问才能思考和探究。课堂上教师是教学活动的组织者,教师只有精心设计贴近学生生活、有意义和富有挑战性的问题情境,让学生在心里产生一种悬念,进而达到以疑激学的目的。本节课一开始,教师用彩色剪纸呈现给学生美丽的蜻蜓、蝴蝶、飞机图,谈话:“今天,从图形王国里来了一家人,看!都谁来了?”教师用漂亮的图画和图形王国抓住了学生的“童心”,引起了学生的好奇与疑问。此时,教师提问:“为什么说他们三个在图形王国里是一家人呢?”这个既富有童趣又有挑战性的问题与学生好奇、想刨根问底的心理产生了共鸣,激发了学生的探索欲望和学习的热情。
二、搭建体验探索的平台,开展有序、有效的实践活动。
《数学课程标准》指出:“有效的数学活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方法”。本节课教师在课堂上展开了观察对称图形——发现特点——动手剪对称图形——欣赏与应用等一系列有序的学习活动。例如:
活动一:观察对称现象,感知对称图形。
< ……此处隐藏11482个字……但学生对弧能进行加减还不理解,教师用线段的加减类比地引导学生,这样学生较易接受。第(2)培养学生合情的推理能力,并强调注意推理的过程的每一步都要有理论依据,理由必须是学过的定义、定理或已知,不能主观臆造。)
问题3:如何将一个圆3等分、5等分┈ 等分呢?
反思:通过教师几何画板的平台演示,放“慢动作”,让学生一目了然得出要将一个圆 等分,只需将这个圆的圆心角360° 等分即可。
三、达标反馈:
1、如图,在⊙O中,(1)∠B=∠C,说明AB(︵)=AC(︵)
(2)AB(︵)=AC(︵),∠B=70°。求∠C度数。
2、如图,AB是直径,BC(︵)=CD(︵)=DE(︵),∠BOC=40°,求∠AOE的度数。
3、如图AB是直径,若∠COA=∠DOB=60°,找出与线段OA相等的所有线段;与弧AC相等的所有弧。
反思:此组的题目较有针对本节课的内容,但有照顾到中下生,但好生可能“吃不饱”,难度可加大。
四、学习小结:
1、内容小结:
(1)圆的对称性:轴对称、旋转对称 (2)圆心角与它所对的弧、所对的弦之间的关系:这三个量中,若有一个量相等,则其它的量两个量也相等。
2、方法归纳:利用圆的对称性和圆心角与它所对的弧、所对的弦之间的关系,说明弦、弧、角相等,或可在圆中求一些角的度数,或可将一个圆任意等分等等。
反思:本节课师生及生生互动良好,课堂气氛活跃,学生能积极思考、发言、交流,利用多媒体劝态演示,使得内容直观形象,再者通过教师点拔,学生掌握较好。当然也存在上些不足之处,如优等生估计“吃不饱”等等。