当前位置:首页 > 教学范文 > 教学设计

六年级数学《鸽巢问题》教学设计范文(精选3篇)

时间:2021-10-04 05:06:19 收藏本文
六年级数学《鸽巢问题》教学设计范文(精选3篇)

六年级数学《鸽巢问题》教学设计范文(精选3篇)

作为一名优秀的教育工作者,通常需要准备好一份教学设计,教学设计是一个系统化规划教学系统的过程。那么教学设计应该怎么写才合适呢?以下是小编精心整理的六年级数学《鸽巢问题》教学设计范文(精选3篇),欢迎大家分享。

  六年级数学《鸽巢问题》教学设计1

教学内容

审定人教版六年级下册数学《数学广角——鸽巢问题》,也就是原实验教材《抽屉原理》。

设计理念

《鸽巢问题》既鸽巢原理又称抽屉原理,它是组合数学的一个基本原理,最先是由德国数学家狄利克雷明确提出来的,因此,也称为狄利克雷原理。

首先,用具体的操作,将抽象变为直观。“总有一个筒至少放进2支笔”这句话对于学生而言,不仅说起来生涩拗口,而且抽象难以理解。怎样让学生理解这句话呢?我觉得要让学生充分的操作,一在具体操作中理解“总有”和“至少”;二在操作中理解“平均分”是保证“至少”的最好方法。通过操作,最直观地呈现“总有一个筒至少放进2支笔”这种现象,让学生理解这句话。

其次,充分发挥学生主动性,让学生在证明结论的过程中探究方法,总结规律。学生是学习的主动者,特别是这种原理的初步认识,不应该是教师牵着学生去认识,而是创造条件,让学生自己去探索,发现。所以我认为应该提出问题,让学生在具体的操作中来证明他们的结论是否正确,让学 ……此处隐藏5531个字……总有一个鸽笼至少飞进了2只鸽子。为什么?

2、教学例2。

(1)课件出示例2。

把7本书放进3个抽屉,不管怎么放,总有一个抽屉里至少放进3本书。为什么?先小组讨论,再汇报。

引导学生得出仿照例1“平均分”的方法得出“如果每个抽屉放2本,剩下1本不管放在哪个抽屉里,都会变成3本,所以总有一个抽屉里至少放进3本书。”

(2)教师:如果把8本书放进3个抽屉,会出现怎样的结论呢?10本呢?11本呢?16本呢?

教师根据学生的回答板书:

7÷3=2……1不管怎么放,总有一个抽屉里至少放进3本;

8÷3=2……2不管怎么放,总有一个抽屉里至少放进3本;

10÷3=3……1不管怎么放,总有一个抽屉里至少放进4本;

11÷3=3……2不管怎么放,总有一个抽屉里至少放进4本;

16÷3=5……1不管怎么放,总有一个抽屉里至少放进6本。

教师:观察上述算式和结论,你发现了什么?

引导学生得出“物体数÷抽屉数=商数……余数”“至少数=商数+1”。

【设计意图】一步一步引导学生合作交流、自主探索,让学生亲身经历问题解决的全过程,增强学习的积极性和主动性。

(三)巩固练习

1、11只鸽子飞进了4个鸽笼,总有一个鸽笼至少飞进了3只鸽子。为什么?

2、5个人坐4把椅子,总有一把椅子上至少坐2人。为什么?

(四)课堂小结

教师:通过这节课的学习,你有哪些新的收获呢?

我们学会了简单的鸽巢问题。

可以用画图的方法来帮助我们分析,也可以用除法的意义来解答。

《六年级数学《鸽巢问题》教学设计范文(精选3篇).doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式