当前位置:首页 > 教学范文 > 教学设计

《勾股定理》教学设计

时间:2023-06-15 00:07:29 收藏本文
《勾股定理》教学设计

《勾股定理》教学设计

作为一位无私奉献的人民教师,常常需要准备教学设计,教学设计以计划和布局安排的形式,对怎样才能达到教学目标进行创造性的决策,以解决怎样教的问题。优秀的教学设计都具备一些什么特点呢?下面是小编收集整理的《勾股定理》教学设计,欢迎大家借鉴与参考,希望对大家有所帮助。

《勾股定理》教学设计1

教材分析

1.勾股定理的逆定理是研究特殊三角形——直角三角形的一种判定方法,体现了数形结合的思想。

2.通过勾股定理与它的逆定理的学习,加深了学生对性质与判定之间辨证统一关系的认识。

3. 完善了知识结构,为后继学习打下基础。

学情分析

初中生已经具备一定的独立思考和探索能力,并能在探索过程中形成自已的观点,能在倾听别人意见的过程中逐渐完善自已的想法,而且本班学生比较上进,思维活跃,愿意表达自已的见解,有一定的互动互助基础。

教学目标

1.知识与技能:

(1)理解勾股定理的逆定理的证明方法并能证明勾股定理的逆定理。

(2)掌握勾股定理的逆定理,并能应用勾股定理的逆定理判定一个三角形是不是直角三角形。

2.过程与方法

(1)通过对勾股定理的.逆定理的探索,经历知识的发生、发展与形成过程。

(2)通过用三角形三边的数量关系来判断三角形的形状,体验数形结合方法的应用。

……此处隐藏15620个字……(用割的方法去探索)

师介绍: (出示图片) 中国古代数学家们很早就发现并运用这个结论。早在公元前20xx年左右,大禹治水时期,就曾经用过此方法测量土地的等高差,公元前1100年左右,西周的数学家商高就曾用"勾三、股四、弦五"测量土地,他们对这一结论的运用至少比古希腊人早500多年。公元200年左右,三国时期吴国数学家赵爽曾构造此图验证了这一结论的正确性。他的这个证明,可谓别具匠心,极富创新意识,他用几何图形的割、来证明代数式之间的相等关系,既严密,又直观,为中国古代以"形"证"数",形、数统一的独特风格树立了一个典范。他是我国有记载以来第一个证明这一结论的数学家。我国数学家们为了纪念我国在这方面的数学成就,将这一结论命名为"勾股定理"。(点题)

20xx年,世界数学家大会在中国北京召开,当时选用这个图案作为会场主图,它标志着我国古代数学的辉煌成就。(见课本50页彩图,欣赏图片)

如图4(构造新图形的方法去探索)

师介绍:(出示图片)勾股定理是数学史上的一颗璀璨明珠,它的证明在数学史上屡创奇迹,从毕达哥拉斯到现在,吸引着世界上无数的数学家、物理学家、数学爱好者对它的探究,甚至政界要人——美国第20任总统加菲尔德,也加入到对它的探索证明中,如图是他当年设计的证明方法。据说至今已经找到的证明方法有四百多种,且每年还会有所增加。(若有时间可以继续出示学生中有价值的图片进行讨论),有兴趣的同学课后可以继续探索……

四、总结:

本节课学习的勾股定理用语言叙说为:

五、作业:

1、继续收集、整理有关勾股定理的证明方的探索问题并交流。

2、探索勾股定理的运用。

《《勾股定理》教学设计.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式